Amp ng dating daan

2009) managed to increase the gender recognition quality to 89.2%, using sentence length, 35 non-dictionary words, and 52 slang words.

The authors do not report the set of slang words, but the non-dictionary words appear to be more related to style than to content, showing that purely linguistic behaviour can contribute information for gender recognition as well.

172 For Tweets in Dutch, we first look at the official user interface for the Twi NL data set, Among other things, it shows gender and age statistics for the users producing the tweets found for user specified searches.

amp ng dating daan-21amp ng dating daan-49amp ng dating daan-4

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.

Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.

With only token unigrams, the recognition accuracy was 80.5%, while using all features together increased this only slightly to 80.6%. (2014) examined about 9 million tweets by 14,000 Twitter users tweeting in American English.

They used lexical features, and present a very good breakdown of various word types.

Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.

Last modified 01-Nov-2019 06:40